Abstract

The phonon dispersion relation in 〈100〉 Si nanowire (SiNW) is calculated by employing a realistic atomistic model surrounded by thin SiO2 layer. We performed molecular dynamics simulations to calculate the dynamical structure factor by the space-time Fourier transform of atomic trajectories, and extracted the phonon dispersion relations. In the SiNWs, low energy phonon branches spread into broad spectra due to the presence of the SiO2 film, which is considered as the origin of the thermal conductivity degradation. A softening of the transverse optical mode also appears due to the lattice strain induced by the outer oxide film. This work suggests that the presence of amorphous oxide layer is crucial factor to characterize phonon vibration properties in practical SiNWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.