Abstract

We report on the first systematic study of phonon propagation in nanostructured composite polymer multilayer films as a function of periodicity and composition using Brillouin light scattering and numerical simulations. The high sensitivity of phonon dispersion to structure and composition allows the probing of the mechanical properties down to the single-layer level. We observe a strikingly different dependence of the longitudinal and shear moduli on confinement effects in the polymer nanolayers. In addition, temperature dependent measurements of sound velocities reveal the presence of distinct glass transition temperatures, indicative of phonon localization in films with large layer thicknesses in agreement with theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.