Abstract

Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits in situ variation of particle packing fraction. Bulk, B, and shear, G, moduli of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction, and variation of the ratio G/B with packing fraction is found to agree quantitatively with predictions for jammed packings of frictional soft particles. In addition, G and B individually agree with numerical predictions for frictional particles. This remarkable level of agreement enabled us to extract an energy scale for the interparticle interaction from the individual elastic constants and to derive an approximate estimate for the interparticle friction coefficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call