Abstract

AbstractPhonon blockade is study in a squeezed cavity optomechanical system, where the cavity mode is squeezed by a parametric driving field. The squeezed cavity mode can parametrically couple to the mechanical mode with an exponentially enhanced coupling strength, which allows one to obtain strong mechanical nonlinearity. By exploring the mechanical nonlinearity, the study researches on phonon blockade by analyzing the statistical properties of phonons, and finds that phonon blockade can be implemented with currently available optomechanical technologies. It is also shown that the phonon blockade can be detected by the measurement of correlation function of the squeezed cavity mode. The results suggest that the squeezed cavity optomechanical system could be a attractive platform for applications in the single‐phonon quantum technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call