Abstract

The interplay between vibrational modes and Kondo physics is a fundamental aspect of transport properties of correlated molecular conductors. We present theoretical results for a single molecule in the Kondo regime connected to left and right metallic leads, creating the usual coupling to a conduction channel with left-right parity even. A center-of-mass vibrational mode introduces an additional phonon-assisted tunneling through the antisymmetric odd channel. A non-Fermi-liquid fixed point, reminiscent of the two-channel Kondo effect, appears at a critical value of the phonon-mediated coupling strength. Our numerical renormalization-group calculations for this system reveal non-Fermi-liquid behavior at low temperatures over lines of critical points. Signatures of this strongly correlated state are prominent in the thermodynamic properties and in the linear conductance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call