Abstract

An ozone-induced agitated reactor has been found to be very effective in degrading industrial wastewater. However, the cost of the ozone generation as well as its short residence time in reactors has restricted its application in a commercial scale. An innovated gas-induced draft tube installed inside a conventional agitated reactor was proved to effectively retain the ozone in a reactor. The setup was demonstrated to significantly promote the ozone utilization rate up to 96% from the conventional rate of 60% above the onset speed. This work investigates the mixing mechanism of an innovated gas-induced reactor for the future scale-up design by using the technique of computational fluid dynamics. A three-dimensional flow model was proposed to compute the liquid-gas free surface as well as the flow patterns inside the reactor. The turbulent effects generated by two 45 degrees pitch-blade turbines were considered and the two phases mixing phenomena were also manipulated by the Eulerian-Eulerian techniques. The consistency of the free surface profiles and the fluid flow patterns proved a good agreement between computational results and the experimental observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.