Abstract

We build an automatic phoneme recognition system based on Hidden Markov Modeling (HMM) which is a Dynamic modeling scheme. Models were built by using Stochastic pattern recognition and Acoustic phonetic schemes to recognise phonemes. Since our native language is Kannada, a rich South Indian Language, we have used 15 Kannada phonemes to train and test these models. Since Mel — Frequency Cepstral Coefficients (MFCC) are well known Acoustic features of speech[1,2], we have used the same in speech feature extraction. Finally performance analysis of models in terms of Phoneme Error Rate (PER) justifies the fact that Dynamic modeling yields good results and can be used in developing Automatic Speech Recognition systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.