Abstract

Rectifier neurons differ from standard ones only in that the sigmoid activation function is replaced by the rectifier function, max(0, x). This modification requires only minimal changes to any existing neural net implementation, but makes it more effective. In particular, we show that a deep architecture of rectifier neurons can attain the same recognition accuracy as deep neural networks, but without the need for pre-training. With 4-5 hidden layers of rectifier neurons we report 20.8% and 19.8% phone error rates on TIMIT (with CI and CD units, respectively), which are competitive with the best results on this database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.