Abstract
Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10nmolL-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P<0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1±3.9%) within 2weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.