Abstract
The Phoenix Lander investigated the polygonal terrain and associated soil and icy soil deposits of a high northern latitude site on Mars. The soil physical properties component involved the analysis of force data determined from motor currents from the Robotic Arm (RA)'s trenching activity. Using this information and images of the landing site, soil cohesion and angle of internal friction were determined. Dump pile slopes were used to determine the angle of internal friction of the soil: 38° ± 5°. Additionally, an excavation model that treated walls and edges of the scoop as retaining walls was used to calculate mean soil cohesions for several trenches in the Phoenix landing site workspace. These cohesions were found to be consistent with the stability of steep trench slopes. Cohesions varied from 0.2 ± 0.4kPa to 1.2 ± 1.8 kPa, with the exception of a subsurface platy horizon unique to a shallow trough for which cohesion will have to be determined using other methods. Soil on polygon mounds had the greatest cohesion (1.2 ± 1.8 kPa). This was most likely due to the presence of adsorbed water or pore ice above the shallow icy soil surface. Further evidence for enhanced cohesion above the ice table includes lateral increase in excavation force, by over 30 N, as the RA approached ice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.