Abstract

The PHO85 gene is a negative regulator of the PHO system in the yeast Saccharomyces cerevisiae and encodes a protein kinase (Pho85) highly homologous to the Cdc28 kinase (Cdc28). Ten cyclin-like proteins are known to interact with Pho85, and combination with different cyclins is believed to be responsible for distinct Pho85 functions, including phosphate metabolism, carbon source utilization and cell cycle regulation. However, only a limited number of substrates of Pho85 kinase, including Pho4, Gsy2 and Sicl, have so far been identified. To search for more targets of Pho85 and to clarify the genetic control mechanisms by Pho85 kinase in these cellular functions, we carried out a genome-wide analysis of the effect of a pho85Delta mutation on gene expression. We found that expression of various genes involved in carbon metabolism are affected by the mutation and that among them, UGP1 promoter activity was increased in the absence of Pho85 kinase. This increase in the promoter activity was not observed in a pho4Delta mutant or with a mutant UGP1 promoter that is devoid of putative Pho4 and Bas2 binding sites, suggesting that UGP1 expression is modulated by Pho85 through Pho4. We also found that expression of several Pho85-cyclin genes were altered by the carbon source, the growth phase and Pho85 kinase itself.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call