Abstract

Crowd counting plays an increasingly important role in public security. Recently, many crowd counting methods for a single image have been proposed but few studies have focused on using temporal information from image sequences of videos to improve prediction performance. In the existing methods using videos for crowd estimation, temporal features and spatial features are modeled jointly for the prediction, which makes the model less efficient in extracting spatiotemporal features and difficult to improve the performance of predictions. In order to solve these problems, this paper proposes a Parasite-Host Network (PHNet) which is composed of Parasite branch and Host branch to extract temporal features and spatial features respectively. To specifically extract the transform features in the time domain, we propose a novel architecture termed as “Relational Extractor”(RE) which models the multiplicative interaction features of adjacent frames. In addition, the Host branch extracts the spatial features from a current frame which can be replaced with any model that uses a single image for the prediction. We conducted experiments by using our PHNet on four video crowd counting benchmarks: Venice,UCSD,FDST and CrowdFlow. Experimental results show that PHNet achieves superior performance on these four datasets to the state-of-the- art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.