Abstract

We report that fluorescence properties and morphology of hyperbranched polyethylenimine (hPEI) cross-linked with formaldehyde are highly dependent on the pH values of the cross-linking reaction. Under acidic and neutral conditions, water-soluble fluorescent copolymer particles (CPs) were produced. However, under basic conditions, white gels with weak fluorescence emission would be obtained. The water-soluble hPEI-formaldehyde (hPEI-F) CPs show strong intrinsic fluorescence without the conjugation to any classical fluorescent agents. By the combination of spectroscopy and microscopy techniques, the mechanism of fluorescence emission was discussed. We propose that the intrinsic fluorescence originates from the formation of a Schiff base in the cross-linking process between hPEI and formaldehyde. Schiff base bonds are the fluorescence-emitting moieties, and the compact structure of hPEI-F CPs plays an important role in their strong fluorescence emission. The exploration on fluorescence mechanism may provide a new strategy to prepare fluorescent polymer particles. In addition, the investigation shows that the hPEI-F CPs hold potential as a fluorescent probe for the detection of copper ions in aqueous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call