Abstract
In recent years, Pickering emulsifiers have been widely used in various production fields due to their excellent structural stability, biocompatibility and environmental friendliness. For some applications, it is required that the emulsifier can quickly respond to environmental stimuli and control the transition between stable and unstable emulsions. In this paper, we report a novel composite Pickering emulsifier with Fe3O4 as the core and magnetic response recognition body, silica as the intermediate protective layer, and chitosan (CS) of different molecular weights to endow solid particles with surface activity and pH-responsive properties. This emulsifier can stabilize the emulsion in the emulsion system with deionized water as the aqueous phase and liquid paraffin as the oil phase and can control the demulsification of the formed emulsion under the dual pH/magnetic stimulation. The experimental results show that Fe3O4@SiO2@CS has good paramagnetism and pH responsiveness. The particle size of the composite emulsifier nanoparticles is between 90 nm and 120 nm, and the best stabilizing effect of the emulsion is achieved when the dosage is 0.5 wt%. In the pH range of 3-11, the emulsifier can rapidly demulsify a stable paraffin oil-water emulsion system under the action of a magnetic field of strength 0.4 T. The pH response of the emulsifier is as follows: when pH ≤ 2, the system can form a stable emulsion, which is composed of fully protonated chitosan as a free chain segment and Fe3O4@SiO2. Emulsion stabilization was achieved with monolithic Fe3O4@SiO2@CS as an emulsifier at pH > 2, and demulsification was achieved at pH ≈ pKb (CS) at 298 K. The research in this paper can provide a feasible idea and synthesis method for the preparation of organic-inorganic composite structure emulsifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.