Abstract

This paper presents a methodology designed for the Prognostics and Health Management (PHM) Asia-Pacific 2023 Conference Data Challenge. In particular, this study targets the health assessment of spacecraft propulsion systems. The challenge involved analyzing and categorizing a simulation-generated dataset that included four unique spacecraft and multiple health conditions, such as normal operation, bubble anomalies, and solenoid valve faults in various system locations. The proposed approach uses a two- step process. First, a model based on similarity measures is employed to classify the data into one of four health states. Then, a model incorporating physics-inspired features is utilized in solenoid valve faults to identify the fault location and estimate the valve opening ratio. The validity of the model is confirmed through cross-validation with the training dataset, which achieved a flawless total score across all permutations. Our method effectively categorizes the test data, including cases from a spacecraft not covered in the training, thereby securing a top position in the competition. The findings highlight the strength of our proposed model, which uses physics-inspired features to predict valve opening ratios, proving useful in managing and interpreting complex, unfamiliar spacecraft health data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call