Abstract

Recent studies have shown that phloridzin, an inhibitor of sodium–glucose cotransporter (SGLT), strongly decreases high K+-induced contraction in phasic muscle, such as tenia coli, but slightly affects tonic muscle, such as trachea . In this study, we examined the inhibitory mechanism of phloridzin on high K+-induced muscle contraction in rat ileum, a phasic muscle. Phloridzin inhibited the high K+-induced contraction in the ileum and the aorta, and the relaxing effect of phloridzin at 1 mM in the ileum was approximately five-fold more potent than that in the aorta. The expression of SGLT1 mRNA in the ileum was higher than that of the aorta. Phloridzin significantly inhibited NADH/NAD ratio and phosphocreatine (PCr) content in the ileum; however, application of pyruvate recovered the inhibition of contraction and PCr content, but had no effect on ratio of NADH/NAD. High K+ increased 2-(N (7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake in ileal smooth muscle cells, and phloridzin inhibited the increase in a concentration-dependent manner. These results suggest that phloridzin inhibits high K+-induced contraction because of the inhibition of energy metabolism via the inhibition of SGLT1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.