Abstract

Phloretin, which can be isolated from apple trees, has demonstrable anti-inflammatory and anti-oxidant effects in macrophages. We previously reported that phloretin could inhibit the inflammatory response and reduce intercellular adhesion molecule 1 (ICAM-1) expression in interleukin (IL)-1β-activated human lung epithelial cells. In the present study we now evaluate whether phloretin exposure could ameliorate lipopolysaccharide (LPS)-induced acute lung injury in mice. Intra-peritoneal injections of phloretin were administered to mice for 7 consecutive days, prior to the induction of lung injury by intra-tracheal administration of LPS. Our subsequent analyses demonstrated that phloretin could significantly suppress LPS-induced neutrophil infiltration of lung tissue, and reduce the levels of IL-6 and tumor necrosis factor (TNF)-α in serum and bronchoalveolar lavage fluid. We also found that phloretin modulated myeloperoxidase activity and superoxide dismutase activity, with decreased gene expression levels for chemokines, proinflammatory cytokines, and ICAM-1 in inflamed lung tissue. Phloretin also significantly reduced the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), thus limiting the inflammatory response, while promoting expression of heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2, both of which are cytoprotective. Our findings suggest that, mechanistically, phloretin attenuates the inflammatory and oxidative stress pathways that accompany lung injury in mice via blockade of the NF-κB and MAPK pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.