Abstract

BackgroundDoxorubicin (Dox), a chemotherapeutic agent known for its efficacy, has been associated with the development of severe cardiotoxicity, commonly referred to as doxorubicin-induced cardiotoxicity (DIC). The role and mechanism of action of phloretin (Phl) in cardiovascular diseases are well-established; however, its specific function and underlying mechanism in the context of DIC have yet to be fully elucidated. ObjectiveThis research aimed to uncover the protective effect of Phl against DIC in vivo and in vitro, while also providing a comprehensive understanding of the underlying mechanisms involved. MethodsDIC cell and murine models were established. The action targets and mechanism of Phl against DIC were comprehensively examined by systematic network pharmacology, molecular docking, transcriptomics technologies, transcription factor (TF) prediction, and experimental validation. ResultsPhl relieved Dox-induced cell apoptosis in vitro and in vivo. Through network pharmacology analysis, a total of 554 co-targeted genes of Phl and Dox were identified. Enrichment analysis revealed several key pathways including the PI3K-Akt signaling pathway, Apoptosis, and the IL-17 signaling pathway. Protein-protein interaction (PPI) analysis identified 24 core co-targeted genes, such as Fos, Jun, Hif1a, which were predicted to bind well to Phl based on molecular docking. Transcriptomics analysis was performed to identify the top 20 differentially expressed genes (DEGs), and 202 transcription factors (TFs) were predicted for these DEGs. Among these TFs, 10 TFs (Fos, Jun, Hif1a, etc.) are also the co-targeted genes, and 3 TFs (Fos, Jun, Hif1a) are also the core co-targeted genes. Further experiments validated the finding that Phl reduced the elevated levels of Hif3a (one of the top 20 DEGs) and Fos (one of Hif3a's predicted TFs) induced by Dox. Moreover, the interaction between Fos protein and the Hif3a promoter was confirmed through luciferase reporter assays. ConclusionPhl actively targeted and down-regulated the Fos protein to inhibit its binding to the promoter region of Hif3a, thereby providing protection against DIC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.