Abstract

The cell lethality and DNA fragmentation caused by phleomycin (PM) were studied in E. coli K12 strains with special reference to the effects of repair or recombination defeciencies and metabolic inhibitors. 1. (1) Unlike excision-defective derivatives of E. coli B, uvrA, uvrB, and uvrC mutants of strain K12 showed no peculiarities compared with wild type in regard to cell survival. Likewise, mutant alleles at uvrD and polA loci had no effect. In contrast, rec mutants were more sensitive to PM-killing than were rec + strains. 2. (2) PM-induced strand breakage in DNA was observed in all strains tested including the above-mentioned mutants. There was no significant distinction between the uvr mutants and the wild type strain, indicating that the uvr-endonuclease was not responsible for the strand breaks. Involvement of endonuclease I was also ruled out. 3. (3) At least some of the PM-induced strand breaks were repairable. 4. (4) PM-induced lethality and strand breakage were totally dependent on energy supply. Inhibition of protein synthesis resulted in a partial and parallel suppression of the two effects. Our results suggest that the lethality is due to DNA strand breakage and the repair of such damage is postulated to be controlled by rec genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.