Abstract

BackgroundLow pleckstrin homology-like domain family A, member 3 (PHLDA3) expression has been reported to be associated with cancer specificity and disease-free survival in esophageal squamous cell carcinoma (ESCC), and was an independent predictor of postoperative recurrence. However, the specific mechanisms involved are still unclear. This paper aimed to explore the role and its mechanisms of PHLDA3 in ESCC. Materials and methodsPHLDA3 and BarH-like homeobox 2 (BARX2) expressions in ESCC were predicted by Gene Expression Profiling Interactive Analysis (GEPIA) analysis and determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western Blot. Western blot detected the expression of proteins associated with migration, angiogenesis and phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway. The University of California Santa Cruz Genomics Institute (UCSC) database predicted that the relationship of BARX2 and PHLDA3 promoter and JASPAR identified the possible binding sites. Dual luciferase gene reporter verified PHLDA3 promoter activity, and the relationship of both was determined by chromatin immunoprecipitation (CHIP). Cell counting kit (CCK)-8, 5-ethynyl-2′-deoxyuridine (EDU) and colony formation were used to assess cell proliferation. Wound healing and transwell were used to detect cell migration and invasion ability. Tube formation assay was applied to assess angiogenesis. Mice were injected with transfected KYSE30 cells under the right axilla. Body weight and tumor volume and mass were recorded for each group of mice. Immunohistochemistry was performed to detect KI67 level in tumor tissues. ResultsBoth PHLDA3 and BARX2 were downregulated in ESCC. The upregulated PHLDA3 suppressed PI3K/AKT expression. In addition, BARX2 bound to the PHLDA3 promoter and transcriptionally activated PHLDA3. PHLDA3 overexpression inhibited ESCC cell proliferation, migration, invasion and angiogenesis, but this effect was reversed by BARX2 knockdown. In addition, BARX2 overexpression inhibited ESCC cell proliferation, migration, invasion and angiogenesis, but this effect was reversed by PHLDA3 knockdown. ConclusionPHLDA3 was transcriptionally activated by BARX2 and inhibited malignant progression of ESCC by downregulating PI3K/AKT levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call