Abstract

ABSTRACT The Kepler spacecraft observed the hot subdwarf star PHL 417 during its extended K2 mission, and the high-precision photometric light curve reveals the presence of 17 pulsation modes with periods between 38 and 105 min. From follow-up ground-based spectroscopy, we find that the object has a relatively high temperature of 35 600 K, a surface gravity of $\log g / {\rm cm\, s^{-2}}\, =\, 5.75$ and a supersolar helium abundance. Remarkably, it also shows strong zirconium lines corresponding to an apparent +3.9 dex overabundance compared with the Sun. These properties clearly identify this object as the third member of the rare group of pulsating heavy-metal stars, the V366-Aquarii pulsators. These stars are intriguing in that the pulsations are inconsistent with the standard models for pulsations in hot subdwarfs, which predicts that they should display short-period pulsations rather than the observed longer periods. We perform a stability analysis of the pulsation modes based on data from two campaigns with K2. The highest amplitude mode is found to be stable with a period drift, $\dot{P}$, of less than 1.1 × 10−9 s s−1. This result rules out pulsations driven during the rapid stages of helium flash ignition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call