Abstract

Cyber security confronts a tremendous challenge of maintaining the confidentiality and integrity of user’s private information such as password and PIN code. Billions of users are exposed daily to fake login pages requesting secret information. There are many ways to trick a user to visit a web page such as, phishing mails, tempting advertisements, click-jacking, malware, SQL injection, session hijacking, man-in-the-middle, denial of service and cross-site scripting attacks. Web spoofing or phishing is an electronic trick in which the attacker constructs a malicious copy of a legitimate web page and request users’ private information such as password. To counter such exploits, researchers have proposed several security strategies but they face latency and accuracy issues. To overcome such issues, we propose and develop client-side defence mechanism based on machine learning techniques to detect spoofed web pages and protect users from phishing attacks. As a proof of concept, a Google Chrome extension dubbed as <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">PhishCatcher</i> , is developed that implements our machine learning algorithm that classifies a URL as suspicious or trustful. The algorithm takes four different types of web features as input and then random forest classifier decides whether a login web page is spoofed or not. To assess the accuracy and precision of the extension, multiple experiments were carried on real web applications. The experimental results show remarkable accuracy of 98.5% and precision as 98.5% from the trials performed on 400 classified phished and 400 legitimate URLs. Furthermore, to measure the latency of our tool, we performed experiments over forty phished URLs. The average recorded response time of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">PhishCatcher</i> was just 62.5 milliseconds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.