Abstract

The overhead power transmission line, as an important component of equipment for long-distance power transmission, is threatened by icing and galloping, which will lead to equipment troubles and cause huge economic loss. Thus, there is a great need for on-line monitoring for transmission lines. Because the photoelectric composite cable, such as optical fiber composite overhead ground wire (OPGW) is widely used, it is possible to introduce distributed optical fiber sensors (DOFS) into transmission line status monitoring. Common schemes based on DOFS usually offer low sensing density and are hard to realize global awareness, while phase sensitive optical time domain reflectometry (Φ-OTDR), as a DOFS that has the characteristic of distributed sensing, is hoping to address the limitation. In this paper, by establishing mathematical models, proposing analytical method, and building demonstration devices to analyze the dynamic strain characteristics of overhead power transmission line, an Φ-OTDR based on-line monitoring scheme of transmission line status is presented and experimentally proved for the first time. The estimation error of sag is less than 5.8% on centimeter scale, and the estimation error of ice thickness is no more than 10.84% on sub-millimeter scale, which gives an accurate description of transmission line status and provides strong support for early warning of transmission line failures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.