Abstract

Phillyrin, an active constituent found in many medicinal plants and certain functional foods, has anti-obesity activity in vivo. The aim of our study was to provide new data on the molecular mechanism(s) underlying the role of phillyrin in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. We found that phillyrin suppressed high glucose-induced lipid accumulation in HepG2 cells. Phillyrin strongly inhibited high glucose-induced fatty acid synthase (FAS) expression by modulating sterol regulatory element-binding protein-1c (SREBP-1c) activation. Moreover, use of the pharmacological AMP-activated protein kinase (AMPK) inhibitor compound C revealed that AMPK is essential for suppressing SREBP-1c expression in phillyrin-treated cells. Finally, we found that liver kinase B1 (LKB1) phosphorylation is required for the phillyrin-enhanced activation of AMPK in HepG2 hepatocytes. These results indicate that phillyrin prevents lipid accumulation in HepG2 cells by blocking the expression of SREBP-1c and FAS through LKB1/AMPK activation, suggesting that phillyrin is a novel AMPK activator with a role in the prevention and treatment of obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call