Abstract

This paper presents an innovative power hardware-in-the-loop (PHiL) development platform for railway pantograph testing. A novel real-time-capable finite-element catenary model is proposed in a train-fixed moving-coordinate formulation combined with an efficient absorbing boundary layer to accurately depict railway catenary dynamics in the region around the pantograph contact point. The complex catenary dynamics is accurately and efficiently modeled, including nonlinear effects like dropper slackening, and a model-predictive impedance controller realizes the task of accurately emulating the virtual catenary dynamics on a real-world pantograph test rig.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.