Abstract

In this paper, we use the semi-group method and an adaptation of the $L^{2}$-method of Hörmander to establish some $\Phi$-entropy inequalities and asymmetric covariance estimates for the strictly convex measures in $\mathbb{R}^{n}$. These inequalities extends the ones for the strictly log-concave measures to more general setting of convex measures. The $\Phi$-entropy inequalities are turned out to be sharp in the special case of Cauchy measures. Finally, we show that the similar inequalities for log-concave measures can be obtained from our results in the limiting case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.