Abstract

Phage therapy has become one of the most promising alternatives to antibiotics in the treatment of bacterial diseases, and identifying phage-host interactions (PHIs) helps to understand the possible mechanism through which a phage infects bacteria to guide the development of phage therapy. Compared with wet experiments, computational methods of identifying PHIs can reduce costs and save time and are more effective and economic. In this paper, we propose a PHI prediction method with a generative adversarial network (GAN)-based data augmentation and sequence-based feature fusion (PHIAF). First, PHIAF applies a GAN-based data augmentation module, which generates pseudo PHIs to alleviate the data scarcity. Second, PHIAF fuses the features originated from DNA and protein sequences for better performance. Third, PHIAF utilizes an attention mechanism to consider different contributions of DNA/protein sequence-derived features, which also provides interpretability of the prediction model. In computational experiments, PHIAF outperforms other state-of-the-art PHI prediction methods when evaluated via 5-fold cross-validation (AUC and AUPR are 0.88 and 0.86, respectively). An ablation study shows that data augmentation, feature fusion and an attention mechanism are all beneficial to improve the prediction performance of PHIAF. Additionally, four new PHIs with the highest PHIAF score in the case study were verified by recent literature. In conclusion, PHIAF is a promising tool to accelerate the exploration of phage therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call