Abstract
We combine the use of labeled precursors with enzyme inhibitors to decipher the biosynthetic pathway of pheromone biosynthesis and the rate-limiting step/s that are regulated by pheromone biosynthesis activating neuropeptide (PBAN). We demonstrate that Plodia interpunctella is able to utilize hexadecanoic acid, and to a lesser extent tetradecanoic acid, for the biosynthesis of the main pheromone component (Z,E)-9,12-tetradecadienyl acetate. This indicated that the main pathway involves a Δ11 desaturase, chain shortening, followed by a Δ12 desaturase, but that a functional Δ9 desaturase could also be utilized. Using reverse transcription-quantitative real-time polymerase chain reaction (RT-QPCR) we distinguish two out of nine possible desaturase gene transcripts in P. interpunctella that are expressed at the highest levels. The rate-limiting step for PBAN-stimulation was studied in two moth species so as to compare the biosynthesis of a diene (P. interpunctella) and a monoene (Helicoverpa armigera) main pheromone component. In both species, incorporation of label from the 13C sodium acetate precursor was activated by PBAN whereas no stimulatory action was observed in the incorporation of the precursors: 13C malonyl coenzyme A; hexadecanoic 16,16,16-2H3 or tetradecanoic 14,14,14-2H3 acids. The acetyl coenzyme A carboxylase (ACCase) inhibitor, Tralkoxydim, inhibited the PBAN-stimulation of incorporation of stable isotope whereas the fatty-acyl reductase inhibitor, Mevastatin, failed to influence the stimulatory action of PBAN. These results provide irrefutable support to the hypothesis that PBAN affects the production of malonyl coenzyme A from acetate by the action of ACCase in the pheromone glands of these moths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.