Abstract

The earliest step in cell division in bacteria is the assembly of FtsZ, an essential cell division protein, into a ring at the division site. FtsZ has GTPase activity and can assemble in vitro to form protein filaments. The present work involved the study of eight phenylpropanoids (cinnamic, p-coumaric, caffeic, chlorogenic, ferulic, 3,4-dimethoxycinnamic and 2,4,5-trimethoxycinnamic acids and eugenol) as inhibitors of Escherichia coli FtsZ. Phenylpropanoids make up the majority of our diet and act as antibacterial agents. Polymerization and GTPase inhibition assays showed that chlorogenic and caffeic acids were the most active amongst these (IC(50) of 70 and 106 µM, respectively). Circular dichroism studies indicated that chlorogenic acid perturbed the protein conformation and electron microscopy showed distorted filaments. Bacillus subtilis 168 cells treated with the phenylpropanoids were longer when compared to the control. The highest binding energy was observed between chlorogenic acid and the homology modelled E. coli FtsZ, which was consistent with the experimental results. A strong negative correlation was observed between binding energy and inhibition of the polymerization ability. 3D-Quantitative structure-activity relationship studies using GTPase activity indicated that the presence of more hydrophilic groups around the 3'- and 4'-carbon increased the activity. The effect of stress-induced formation of cell filamentation has to be understood before confirming the role of phenylpropanoids as FtsZ inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.