Abstract

Tri-ortho-cresyl phosphate (TOCP) is an organophosphorus ester, which can cause a type of neurotoxicity known as organophosphate-induced delayed neuropathy (OPIDN). Our recent study has shown that the enhanced degradation of neurofilament (NF) in peripheral nerve of hens is an early event of TOCP-induced OPIDN (Song et al., 2009). The main objective of this investigation is to study the effect of TOCP administration on NF content and NF degradation when OPIDN is blocked by pretreatment with phenylmethylsulfonyl fluoride (PMSF). The hens were pretreated 24 h earlier with PMSF and subsequently treated with a single dosage of 750 mg/kg TOCP, then sacrificed on the corresponding time points of 0, 1, 5, 10, and 21 days after dosing TOCP, respectively. The tibial nerves were dissected, homogenized, and centrifuged at 100,000 × g. The level of NF triplet protein in both pellet and supernatant fractions of tibial nerves was determined. Western blotting analysis showed a significant increase of three NF subunits in hens treated with PMSF and TOCP compared with the control. These changes were observed within 24 h of PMSF administration and then followed by an obvious recovery. Furthermore, accompanied with the increase of NF content, a significant decline in NF-L degradation rate was observed in both fractions of tibial nerves. Taken together, these results demonstrated the pretreatment with PMSF could inhibit TOCP-induced NF degradation while it protected hens against the development of OPIDN, which suggested the inhibition of NF-associated protease in peripheral nerves might be an underlying protective mechanism of PMSF against OPIDN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.