Abstract

Differential inhibition of brain versus peripheral acetylcholinesterase (AChE) by phenylmethylsulfonyl fluoride (PMSF) suggested that PMSF might preferentially inhibit different AChE molecular forms. AChE inhibition was examined after systemic and in vitro PMSF treatment. Systemic administration resulted in no overt behavioral changes but produced a 71% reduction in brain AChE; hemidiaphragm, extensor digitorum longus and soleus muscles showed 65, 50 and 41% reductions. Muscle asymmetric AChE was reduced to the greatest extent (50–80%). The tetrameric form was inhibited in brain and hemidiaphragm (60–76%) but spared in other muscles (18–22%). Monomeric AChE was spared in all tissues. When PMSF was added to a muscle homogenate all forms were inhibited equally. Purified monomer and tetramer forms were inhibited equally in vitro. These results suggest that PMSF inhibition of AChE is a consequence of a selective inhibition of membrane-associated forms and that the apparent brain selectivity is related to the greater fraction of membrane-associated AChE in brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.