Abstract
The gene encoding the superoxide dismutase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsSOD) was cloned and sequenced and its expression in Escherichia coli obtained. The chemicophysical properties of the recombinant SsSOD were identical with those of the native enzyme. The recombinant SsSOD possessed a covalent modification of Tyr41, already observed in native SsSOD [Ursby, T., Adinolfi, B.S., Al-Karadaghi, S., De Vendittis, E. & Bocchini, V. (1999) J. Mol. Biol. 286, 189--205]. HPLC analysis of SsSOD samples prepared from cells treated or not with phenylmethanesulfonyl fluoride (PhCH(2)SO(2)F), a protease inhibitor routinely added during the preparation of cell-free extracts, showed that the modification was caused by PhCH(2)SO(2)F. Refinement of the crystal model of SsSOD confirmed that a phenylmethanesulfonyl moiety was attached to the hydroxy group of Tyr41. PhCH(2)SO(2)F behaved as an irreversible inactivator of SsSOD; in fact, the specific activity of both native and recombinant enzyme decreased as the percentage of modification increased. The covalent modification caused by PhCH2SO2F reinforced the heat stability of SsSOD. These results show that Tyr41 plays an important role in the enzyme activity and the maintenance of the structural architecture of SsSOD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.