Abstract

Phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) is rightfully considered the paradigm treatable metabolic disease. Dietary substrate restriction (i.e. phenylalanine (Phe) restriction) was applied >60 years ago and remains the primary PKU management means. The traditional model of PKU neuropathophysiology dictates blood Phe over-representation directs asymmetric blood:brain barrier amino acid transport through the LAT1 transporter with subsequent increased cerebral Phe concentration and low concentrations of tyrosine (Tyr), tryptophan (Trp), leucine (Leu), valine (Val), and isoleucine (Ile). Low Tyr and Trp concentrations generate secondary serotonergic and dopaminergic neurotransmitter paucities, widely attributed as drivers of PKU neurologic phenotypes. White matter disease, a central PKU characteristic, is ascribed to Phe-mediated tissue toxicity. Impaired cerebral protein synthesis, by reduced concentrations of non-Phe large neutral amino acids, is another cited pathological mechanism. The PKU amino acid transport model suggests Phe management should be more efficacious than is realized, as even early identified, continuously treated patients that retain therapy compliance into adulthood, demonstrate neurologic disease elements. Reduced cerebral metabolism was an early-recognized element of PKU pathology. Legacy data (late 1960's to mid-1970's) determined the Phe catabolite phenylpyruvate inhibits mitochondrial pyruvate transport. Respirometry of Pahenu2 cerebral mitochondria have attenuated respiratory chain complex 1 induction in response to pyruvate substrate, indicating reduced energy metabolism. Oxidative stress is intrinsic to PKU and Pahenu2 brain tissue presents increased reactive oxygen species. Phenylpyruvate inhibits glucose-6-phosphate dehydrogenase that generates reduced niacinamide adenine dinucleotide phosphate the obligatory cofactor of glutathione reductase. Pahenu2 brain tissue metabolomics identified increased oxidized glutathione and glutathione disulfide. Over-represented glutathione disulfide argues for reduced glutathione reductase activity secondary to reduced NADPH. Herein, we review evidence of energy and oxidative stress involvement in PKU pathology. Data suggests energy deficit and oxidative stress are features of PKU pathophysiology, providing intervention-amenable therapeutic targets to ameliorate disease elements refractory to standard of care.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call