Abstract

We endeavored to use a basic and well-controlled experimental system to characterize the extent and time sequence of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) involvement in the development of cardiac hypertrophy, including transcription, protein expression, Ca(2+) transport, and cytoplasmic Ca(2+) signaling. To this end, hypertrophy of neonatal rat cardiac myocytes in culture was obtained after adrenergic activation with phenylephrine (PE). Micrographic assessment of myocyte size, rise of [(14)C]phenylalanine incorporation and total protein expression, and increased transcription of atrial natriuretic factor demonstrated unambiguously the occurrence of hypertrophy. An early and prominent feature of hypertrophy was a reduction of the SERCA2 transcript, as determined by RT-PCR with reference to a stable marker such as glyceraldehyde-3-phosphate dehydrogenase. Reduction of Ca(2+)-ATPase protein levels and Ca(2+) transport activity to approximately 50% of control values followed with some delay, evidently as a consequence of a primary effect on transcription. Cytosolic Ca(2+) signaling kinetics, measured with a Ca(2+)-sensitive dye after electrical stimuli, were significantly altered in hypertrophic myocytes. However, the effect of PE hypertrophy on cytosolic Ca(2+) signaling kinetics was less prominent than observed in myocytes subjected to drastic SERCA2 downregulation with small interfering RNA or inhibition with thapsigargin (10 nM). We conclude that SERCA2 undergoes significant downregulation after hypertrophic stimuli, possibly due to lack of SERCA gene involvement by the hypertrophy transcriptional program. The consequence of SERCA2 downregulation on Ca(2+) signaling is partially compensated by alternate Ca(2+) transport mechanisms. These alterations may contribute to a gradual onset of functional failure in long-term hypertrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.