Abstract

The development of appropriate molecular tools to monitor different mercury speciation, especially CH3Hg+, in living organisms is attractive because its persistent accumulation and toxicity are very harmful to human health. Herein, we develop a novel activity-based ratiometric SERS nanoprobe to selectively monitor Hg2+ and CH3Hg+ in aqueous media and in vivo. In this nanoprobe, a new bifunctional Raman probe bis-s-s'-[(s)-(4-(ethylcarbamoyl)phenyl)boronic acid] (b-(s)-EPBA) was synthesized and immobilized on the surface of gold nanoparticles via a Au-S bond, in which the phenylboronic acid group was employed as the recognition unit for Hg2+ and CH3Hg+ based on the Hg-promoted transmetalation reaction. In the presence of Hg2+ and CH3Hg+, a new surface-enhanced Raman scattering (SERS) peak aroused from of C-Hg appeared at 1080 cm-1, and the SERS intensity at 1002 cm-1 belonged to the B-O symmetric stretching decreased simultaneously. The quantitative tracking of Hg2+ and CH3Hg+ was realized based on the SERS intensity ratio (I1080/I1303) with rapid response (∼4 min) and high sensitivity, with detection limits of 10.05 and 25.13 nM, respectively. Moreover, the SERS sensor was used for the quantitative detection of Hg2+ and CH3Hg+ in four actual water samples with a high accuracy and excellent recovery. More importantly, cell imaging experiments showed that AuNPs@b-(s)-EPBA could quantitatively detect intracellular CH3Hg+ and had a good concentration dependence in ratiometric SERS imaging. Meanwhile, we demonstrated that AuNPs@b-(s)-EPBA could detect and image CH3Hg+ in zebrafish. We anticipate that AuNPs@b-(s)-EPBA could potentially be used to study the physiological functions related to CH3Hg+ in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.