Abstract

Matrix assisted pulsed laser evaporation was used to deposit molecularly imprinted polymer films of an amphiphilic block copolymer imprinted with an amino acid. This method avoids the need for a common solvent for host and template, and permits fabrication of layers with controlled thicknesses in the nanometer range. Polystyrene-block-polyethylene oxide copolymer and phenylalanine template were co-deposited onto surface plasmon resonance (SPR) sensors from a water/toluene emulsion. FTIR confirmed removal and reintroduction of phenylalanine, and SPR measurements were used for quantitative analysis. A binding ratio of more than 10 was obtained for phenylalanine on imprinted sensors vs. the non-imprinted control surfaces of the same polymer, and a detection limit of 0.5 mM phenylalanine was established. Exposure of sensors to alanine, glutamine, tryptophan, and tyrosine demonstrated that the sensors were highly specific.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.