Abstract
A novel process is described for the synthesis of di- and trisubstituted cyclohexenes from an arene. These compounds are prepared from three independent nucleophilic addition reactions to a phenyl sulfone (PhSO2R; R = Me, Ph, and NC4H8) dihapto-coordinated to the tungsten complex {WTp(NO)(PMe3)}(Tp = trispyrazolylborate). Such a coordination renders the dearomatized aryl ring susceptible to protonation at a carbon ortho to the sulfone group. The resulting arenium species readily reacts with the first nucleophile to form a dihapto-coordinated sulfonylated diene complex. This complex can again be protonated, and the subsequent nucleophilic addition forms a trisubstituted cyclohexene species bearing a sulfonyl group at an allylic position. Loss of the sulfinate anion forms a π-allyl species, to which a third nucleophile can be added. The trisubstituted cyclohexene can then be oxidatively decomplexed, either before or after substitution of the sulfonyl group. Nucleophiles employed include masked enolates, cyanide, amines, amides, and hydride, with all three additions occurring to the same face of the ring, anti to the metal. Of the 12 novel functionalized cyclohexenes prepared as examples of this methodology, nine compounds meet five independent criteria for evaluating drug likeliness. Structural assignments are supported with nine crystal structures, density functional theory studies, and full 2D NMR analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.