Abstract

Abstract The efficiency of more than 25% in organic-inorganic hybrid perovskite solar cells has made them very attractive in the pursuit of cheaper alternatives to Si-based devices. However, the stability of the perovskite solar cells was challenging, given their high susceptibility to moisture. Very few reports have emerged in this regard that investigated the influence of introducing large cations into a triple cation perovskite (TC-PVS), with several studies limited to single and dual cation perovskites. Further, the crystallization of TC-PVS on a polymer surface such as PEDOT is not straightforward, and their inclusion in inverted solar cell devices was limited. In this work, we investigated the impact of incorporating Phenyl ethyl ammonium cation into FAMACs triple cation composition. We demonstrated improvements in the crystallinity and more uniform coverage with little to no pinholes and smooth morphology for an optimum PEA amount of 1.67% in the precursor solution. The superior morphology, along with a passivation effect from a quasi 2D phase, led to increased photoluminescence and minority carrier lifetimes. Corresponding inverted photovoltaic devices prepared with PEA showed increased open-circuit voltage from 0.89 V for a control sample to 0.95 V for 1.67% PEA and 0.98 V for 5% PEA, doped devices in an inverted configuration. The efficiency, as a result, increased from 11.27% for a control device to 14.85% for a 1.67% PEA doped device. Further, PEA doped devices showed improved operational and thermal stability attributed to the higher moisture tolerance and light-soaking ability of the PEA doped TC-PVS compared to the undoped TC-PVS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.