Abstract

Rats can anticipate a daily meal by entrainment of a circadian timekeeping mechanism that is anatomically separate from the light-entrainable circadian pacemaker located in the suprachiasmatic nucleus. The dorsomedial nucleus of the hypothalamus (DMH) has been claimed to be critical for the expression of circadian rhythms of food anticipatory activity, but efforts to confirm this finding have so far failed. Failure to confirm that DMH ablation disrupts or eliminates food anticipatory rhythms has been attributed to the use of overhead motion sensors rather than telemetry to measure locomotor activity. To examine the relationship between motion sensor and telemetric measures of locomotor activity, transponders were implanted into the peritoneal cavity of adult male rats, and activity was recorded continuously by both telemetry and infrared motion sensors. Activity counts were approximately 4 fold higher as detected by telemetry, but normalized activity patterns were virtually identical for the two measures during ad-lib food access, 4 h/day food restriction and total food deprivation after food restriction. Overhead motion sensors and telemetry are equivalent measures of food anticipatory activity in rats. Telemetry is an effective tool for continuous recording of body temperature but has no advantages over infrared motion sensors for measuring food anticipatory activity rhythms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.