Abstract

AbstractAgronomic and physiological traits in peanut (Arachis hypogaea) are important to breeders for selecting high‐yielding and resilient genotypes. However, direct measurement of these traits is labor‐intensive and time‐consuming. This study assessed the feasibility of using unmanned aerial vehicles (UAV)‐based hyperspectral imaging and machine learning (ML) techniques to predict three agronomic traits (biomass, pod count, and yield) and two physiological traits (photosynthesis and stomatal conductance) in peanut under drought stress. Two different approaches were evaluated. The first approach employed eighty narrowband vegetation indices as input features for an ensemble model that included K‐nearest neighbors, support vector regression, random forest, and multi‐layer perceptron (MLP). The second approach utilized mean and standard deviation of canopy spectral reflectance per band. The resultant 400 features were used to train a deep learning (DL) model consisting of one‐dimensional convolutional layers followed by an MLP regressor. Predictions of the agronomic traits obtained using feature learning and DL (R2 = 0.45–0.73; symmetric mean absolute percentage error [sMAPE] = 24%–51%) outperformed those obtained using feature engineering and conventional ML models (R2 = 0.44–0.61, sMAPE = 27%–59%). In contrast, the ensemble model had a slightly better performance in predicting physiological traits (R2 = 0.35–0.57; sMAPE = 37%–70%) compared to the results obtained from the DL model (R2 = 0.36–0.52; sMAPE = 47%–64%). The results showed that the combination of UAV‐based hyperspectral imaging and ML techniques have the potential to assist breeders in rapid screening of genotypes for improved yield and drought tolerance in peanut.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.