Abstract

A nonaxenic strain of Cylindrospermopsis raciborskii Woloszynska (AWT 205) was grown in batch culture, with and without nitrate as the primary N source. Rapid log-phase growth with nitrate was 1.0 doubling/day versus 0.3 doubling/day without nitrate. Cylindrospermopsin (CYN) production was measured by HPLC. The rate of intracellular CYN production matched cell division rate for both the diazotrophies at cell densities less than 10(7) cell/ml. At cell density > 10(7) cell/ml, additional resource limitation in batch culture slowed log-phase growth to 0.04 division/day and cell division and CYN production decoupled. Intracellular CYN concentration increased at a rate of 0.08 doubling/day, twice the cell division rate. Extracellular CYN as a proportion of the total CYN increased from 20% during the rapid growth phase, to 50% during the slow growth phase. The total CYN yield from cultures grown out to stationary phase (55 days) exceeded 2 mg CYN/I. C. raciborskii cells in log-phase growth, exposed to 1 ppm copper (as copper sulphate), lysed within 24 hours. After copper treatment, all CYN was in the filterable fraction. These findings imply that in naturally occurring blooms of C. raciborskii, the movement of intracellular CYN into solution will be the greatest during stationary phase, when intracellular concentrations are highest and cell lysis is more frequent. The application of algicides that promote cell lysis will exacerbate this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.