Abstract
Downy mildew, caused by Peronospora parasitica (Pers. Fr.) Fr., is one of the most economically important diseases of broccoli (Brassica oleracea L. Italica group). Previous studies have shown that resistance to downy mildew in broccoli is dependent on plant age with seedling resistance being independent of mature-plant resistance. The objectives of this study were to: 1) determine if valid evaluations for downy mildew resistance can be conducted at both the cotyledon and the three to four true-leaf stages on the same plants of a given broccoli entry; 2) determine if doubled-haploid (DH) lines derived from the resistant hybrid `Everest' also exhibit resistance to downy mildew and if so, characterize the resistance phenotype(s) in these lines; and 3) determine if identified resistant DH lines exhibit resistance to isolates of P. parasitica acquired from different geographic regions of the United States. Twenty-three DH broccoli inbreds and two commercial hybrids were evaluated for reaction at different developmental stages to infection by P. parasitica in a controlled environment. Results showed that broccoli plants can be evaluated for downy mildew resistance in a two-stage process. Inoculation at the cotyledon stage did not offer any cross-protection or otherwise influence the expression of reaction phenotype (RP) when the same plants were subsequently inoculated at the three to four true-leaf stage. Three different RPs to infection by P. parasitica were identified in DH inbreds. These were: 1) susceptibility at both the cotyledon stage and the true-leaf stage; 2) resistance at both the cotyledon and true-leaf stage; and 3) susceptibility at the cotyledon stage but resistance at the true-leaf stage. There was no effect of two pathogenic isolates from different geographic regions on RP of DH broccoli inbreds. Selection of plant resistance to downy mildew at the cotyledon stage will effectively identify plants with high levels of resistance at subsequent developmental stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.