Abstract

Noise in gene and protein expression is a major cause for bioprocess deviation. However, this phenomenon has been only scarcely considered in real bioprocessing conditions. In this work, a scaling-law derived from genome-scale studies based on GFP reporter systems has been calibrated to an on-line flow cytometry device, allowing thus to get an insight at the level of promoter activity and associated noise during a whole microbial culture carried out in bioreactor. We show that most of the GFP reporter systems investigated and thus corresponding genes could be included inside the area covered by the scaling-law. The experimental results suggest that this scaling-law could be used to predict the dynamics of promoter activity, as well as the associated noise, in bioprocessing conditions. The knowledge acquired throughout this work could be used for the design of more robust expression systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.