Abstract
Colobanthus quitensis (Antarctic pearlwort) is one of the only two native vascular plants to inhabit the extreme environmental conditions of Antarctica. Colobanthus quitensis has a wide geographic distribution, both in latitude and altitude, and always inhabits extreme environments. This makes it crucial for understanding environmental tolerance mechanisms, and a useful model for studies regarding genetic diversity and intraspecific morphology. Several morphological and molecular descriptors were applied to C. quitensis populations, constituting the first study of its kind in these species. We postulated that morphological variability is strongly linked to geographic distribution, and that this is manifested in external morphological characteristics and genetic structure. A large intra- and interpopulational morphological variability was verified. Both morphological variability and genetics made it possible to form two separate groups between continental and Antarctic island populations. The genetic diversity was high to moderate with the least amount of diversity towards the north. The genetic structure was high, and the gene flow between populations was low. The correlation between morphological, genetic, geographic and altitudinal distances permits the proposal of an isolation by distance model that can be used between populations with high Bio-geographical influence. Understanding what factors lead to local or colonization adaptation, and determining the morphological variations and genetic differentiation in populations of C. quitensis, is vital for the understanding of the evolutionary history that has contributed to the success of the establishment of this species in an environment as extreme as Antarctica. Additionally, this study demonstrates the usefulness of the combined use of morpho-physiological and molecular markers for variability and diversity studies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.