Abstract
AbstractImmunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell–sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.