Abstract

Although Candida tropicalis has become an increasingly important human pathogen, little is known regarding its potential to cause disease. In this study we evaluated the phenotypic switching ability of C. tropicalis and analyzed the effect of switching on biological properties related to virulence factors. We demonstrated that C. tropicalis switched spontaneously, reversibly and at high frequency (10(-1) to 10(-3)) when grown on yeast extract-peptone-D-glucose (YPD) agar medium. Phenotypic switching in five clinical isolates of C. tropicalis resulted in colonies exhibiting the following morphologies: crepe, rough, crater, irregular center, mycelial and diffuse. The majority of the variant colonies were associated with higher percentages of filamentous growth relative to their parental unswitched isolates. Significant differences (P < 0.05) in the production of hemolytic factor were found between most of the switched variants and their respective parental counterparts. Variant colonies exhibiting the crepe (derived from isolates 49.07 and 100.10) and rough phenotype (derived from isolate 49.07) had higher biofilm formation than their parental counterparts exhibiting a smooth dome surface (P < 0.05). Our data revealed that switching was correlated with changes in the in vitro minimum inhibitory concentrations (MICs) of a subset of the switched variants phenotypes to itraconazole. While the MIC to itraconazole was higher for crepe variant compared with its parental isolate 49.07, the rough variant of 100.10 had a lower MIC to this antifungal agent. The presented data support the role of phenotypic switching in promoting changes in phenotypic expression of putative virulence traits and itraconazole susceptibility of clinical isolates of C. tropicalis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call