Abstract

BTN1 of Saccharomyces cerevisiae encodes an ortholog of CLN3, the human Batten disease gene. We have reported previously that deletion of BTN1, btn1-Delta, resulted in a pH-dependent resistance to D-(-)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (ANP). This phenotype was caused by btn1-Delta strains having an elevated ability to acidify growth medium through an elevated activity of the plasma membrane H(+)-ATPase, resulting from a decreased vacuolar pH during early growth. We have determined that growing btn1-Delta strains in the presence of chloroquine reverses the resistance to ANP, decreases the rate of medium acidification, decreases the activity of plasma membrane H(+)-ATPase, and elevates vacuolar pH. However, an additional effect of this phenotypic reversal is that activity of plasma membrane H(+)-ATPase is decreased further and vacuolar pH is increased further as btn1-Delta strains continue to grow. This phenotypic reversal of btn1-Delta can be considered for developing a therapy for Batten disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.