Abstract

ObjectivesHuman airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model.MethodsAir-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively.Main ResultsALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1).ConclusionsALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.

Highlights

  • Rhinovirus (HRV) is a pathogen for the common cold, but is the major cause of acute asthma and chronic obstructive pulmonary disease (COPD) exacerbations [1,2,3]

  • These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, Cadherin related family member 3 (CDHR3)), and novel ones that were identified for the first time in this study (e.g. CCRL1)

  • air-liquid interface (ALI)-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection

Read more

Summary

Introduction

Rhinovirus (HRV) is a pathogen for the common cold, but is the major cause of acute asthma and chronic obstructive pulmonary disease (COPD) exacerbations [1,2,3]. Much of our current knowledge of HAEC responses to HRV infection is derived from in vitro HAEC culture studies. Two major approaches used to study in vitro responses to HRV infection include use of undifferentiated HAEC monolayers in submerged (Sub) cultures, and well-differentiated HAEC cultured in air-liquid interface (ALI) systems [6,7]. Differentiation of HAECs has been reported to induce resistance to HRV infection [10] It is unclear whether the reported difficulty of infecting differentiated ALI cultures was due to physical reasons, such as development of physical/biochemical barriers [11], or technical reasons, such as the HRV application protocol or the relatively short time period of exposure utilized in the experiments [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call