Abstract

Maize (Zea mays L.) protein is considered to be of low quality due to low levels of the essential lysine and tryptophan amino acids. An alternative to solve this problem is to use the opaque-2 gene, which improves the level of these amino acids, but has negative pleiotropic effects on agronomic characters. A phenotypic recurrent selection scheme was carried out in two non-opaque maize populations to verify the possibility of improving their protein quality without using this gene. Four cycles were completed and a 20% selection intensity for tryptophan content in the kernels was used in two populations, IG-1 and IG-2. The original and the four-cycle populations were evaluated in three locations for agronomic traits. For protein and tryptophan content, a separated trial was carried out because plants of the plots were hand-pollinated. No increase in tryptophan content was observed in the IG-2 population, whereas IG-1 presented a small increase (0.70% per cycle). The ratio tryptophan/protein increased 1.26% per cycle in IG-1 and the protein content did not increase in both populations. The ESALQ-VD2-opaque check was superior in relation to both populations for protein quality, as expected, even after completion of four selection cycles. The kernel yield (2.5% per cycle) prolificacy, plant and ear heights, decreased with selection cycles, as a correlated response to selection. Phenotypic recurrent selection in non-opaque maize was not able to increase, at reasonable rates, the protein quality of maize kernels.

Highlights

  • Maize protein is considered to be of low quality as it contains low levels of the essential lysine and tryptophan amino acids

  • This article reports the results of four cycles of phenotypic recurrent selection to improve the protein quality of the kernels in two non-opaque maize populations, as well as alterations in various important agronomic traits

  • The average values for tryptophan content (TRP) for the four selective cycles indicated that there was a tendency for linear increase with recurrent selection for the IG-1 population (b%=0.68), with an accumulated gain of 2.4% in the fourth cycle

Read more

Summary

Introduction

Maize protein is considered to be of low quality as it contains low levels of the essential lysine and tryptophan amino acids. An alternative for this problem is using recurrent selection to improve the protein quality of normal maize (non-opaque) by increasing the levels of essential amino acids (Zuber & Helm, 1972).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.