Abstract
Phenotypic plasticity is a widespread phenomenon, allowing organisms to better adapt to changing environments. Most empirical and theoretical studies are restricted to irreversible plasticity where the expression of a specific phenotype is mostly determined during development. However, reversible plasticity is not uncommon; here, organisms are able to switch back and forth between phenotypes. We present two optimization models for the fitness of (i) non-plastic, (ii) irreversibly plastic, and (iii) reversibly plastic genotypes in a fluctuating environment. In one model, the fitness values of an organism during different life phases act together multiplicatively (so as to consider traits that are related to survival). The other model additionally considers additive effects (corresponding to traits related to fecundity). Both models yield qualitatively similar results. If the only costs of reversible plasticity are due to temporal maladaptation while switching between phenotypes, reversibility is virtually always advantageous over irreversibility, especially for slow environmental fluctuations. If reversibility implies an overall decreased fitness, then irreversibility is advantageous if the environment fluctuates quickly or if stress events last relatively short. Our results are supported by observations from different types of organisms and have implications for many basic and applied research questions, e.g., on invasive alien species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.